На первых этапах развития MySQL его функциональные возможности разрабатывались под потребности самого крупного из наших заказчиков. Это делалось для обслуживания больших хранилищ данных для пары самых крупных продавцов в Швеции.
По всем магазинам мы получаем еженедельный отчет по продажам по бонусным карточкам, и обеспечиваем владельцам магазинов полезной информацией о том, как рекламные компании влияют на их покупателей.
Объем этих данных весьма значителен (в сумме приблизительно 7 миллионов транзакций в месяц), и, кроме того, мы должны предоставлять пользователям данные за периоды от 4 до 10 лет. Каждую неделю мы получаем от клиентов просьбы предоставить "мгновенный" доступ к новым отчетам на основе этих данных.
Эта проблема была решена следующим образом. Мы сохраняем всю информацию за
месяц в сжатых таблицах "транзакций". У нас есть набор простых макросов
(сценарий), генерирующий итоговые таблицы, сгруппированные по различным
критериям (группа изделий, идентификатор заказчика, хранилище...) из
таблиц транзакций. Отчеты - это веб-страницы, динамически генерирующиеся
небольшим сценарием на Perl, который просматривает веб-страницу, выполняет
SQL-операторы, содержащиеся в ней и вставляет результаты. Для этих целей
можно было бы использовать PHP или модуль mod_perl
, но в то время этих
средств еще не существовало.
Для графических данных мы написали простой инструмент на C, который может создавать GIF-файлы на основе результата SQL-запроса (определенным образом обработав результат). Это также динамически выполняется из создаваемой Perl'ом странички.
В большинстве случаев новый отчет может быть создан просто путем копирования существующего сценария и модифицирования SQL-запроса в нем. Иногда требуется дополнительно добавить поля в существующую итоговую таблицу или сгенерировать новую таблицу, но это также делается очень просто, поскольку у нас все транзакционные таблицы хранятся на диске (в настоящее время у нас имеется меньшей мере 50Гб транзакционных таблиц и 200Гб других клиентских данных.)
Кроме того, мы обеспечиваем для наших клиентов возможность обращаться к итоговым таблицам непосредственно через интерфейс ODBC; таким образом, продвинутые пользователи могут самостоятельно экспериментировать с данными.
У нас не было каких-либо проблем при обработке этих данных на весьма скромном Sun Ultra SPARCstation (2x200 МГц). Недавно мы заменили один из наших серверов на двухпроцессорный UltraSPARC с тактовой частотой 400 МГц и теперь планируем начать обрабатывать транзакции на уровне продукта, что будет означать десятикратное увеличение объема данных. Мы полагаем, что сможем справиться с этим объемом лишь только добавлением соответствующего количества дисков.
Помимо этого мы экспериментируем с Intel-Linux, чтобы получить больше производительности по низшей цене. Теперь, имея бинарно-переносимый формат базы данных (появившийся в версии 3.23), мы начнем использовать его для некоторых частей приложения.
Наша интуиция подсказывает, что у Linux производительность значительно выше при низкой и средней загрузке, а у Solaris - когда высокая загрузка начнет возникать из-за критического дискового ввода-вывода. Но у нас нет пока никаких выводов по этому поводу. После обсуждения с разработчиками ядра Linux мы выяснили, что в это может быть побочным эффектом работы ядра: когда Linux дает слишком много ресурсов пакетным заданиям, задачи взаимодействия начинают замедляться. Из-за этого машина работает очень медленно и не реагирует ни на что, пока обрабатываются большие пакеты. Надеемся, что в последующих ядрах Linux этот вопрос найдет свое решение.