PostgreSQL 8.0.1 Documentation | ||||
---|---|---|---|---|
Prev | Fast Backward | Chapter 35. PL/pgSQL - SQL Procedural Language | Fast Forward | Next |
35.7. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL's control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.
35.7.1. Returning From a Function
There are two commands available that allow you to return data from a function: RETURN and RETURN NEXT.
35.7.1.1. RETURN
RETURN with an expression terminates the function and returns the value of expression to the caller. This form is to be used for PL/pgSQL functions that do not return a set.
When returning a scalar type, any expression can be used. The expression's result will be automatically cast into the function's return type as described for assignments. To return a composite (row) value, you must write a record or row variable as the expression.
The return value of a function cannot be left undefined. If control reaches the end of the top-level block of the function without hitting a RETURN statement, a run-time error will occur.
If you have declared the function to return void, a RETURN statement must still be provided; but in this case the expression following RETURN is optional and will be ignored if present.
35.7.1.2. RETURN NEXT
When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly different. In that case, the individual items to return are specified in RETURN NEXT commands, and then a final RETURN command with no argument is used to indicate that the function has finished executing. RETURN NEXT can be used with both scalar and composite data types; in the latter case, an entire "table" of results will be returned.
Functions that use RETURN NEXT should be called in the following fashion:
That is, the function must be used as a table source in a FROM clause.
RETURN NEXT does not actually return from the function; it simply saves away the value of the expression. Execution then continues with the next statement in the PL/pgSQL function. As successive RETURN NEXT commands are executed, the result set is built up. A final RETURN, which should have no argument, causes control to exit the function.
Note: The current implementation of RETURN NEXT for PL/pgSQL stores the entire result set before returning from the function, as discussed above. That means that if a PL/pgSQL function produces a very large result set, performance may be poor: data will be written to disk to avoid memory exhaustion, but the function itself will not return until the entire result set has been generated. A future version of PL/pgSQL may allow users to define set-returning functions that do not have this limitation. Currently, the point at which data begins being written to disk is controlled by the work_mem configuration variable. Administrators who have sufficient memory to store larger result sets in memory should consider increasing this parameter.
35.7.2. Conditionals
IF statements let you execute commands based on certain conditions. PL/pgSQL has five forms of IF:
IF ... THEN
IF ... THEN ... ELSE
IF ... THEN ... ELSE IF
IF ... THEN ... ELSIF ... THEN ... ELSE
IF ... THEN ... ELSEIF ... THEN ... ELSE
35.7.2.1. IF-THEN
IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be executed if the condition is true. Otherwise, they are skipped.
Example:
35.7.2.2. IF-THEN-ELSE
IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that should be executed if the condition evaluates to false.
Examples:
35.7.2.3. IF-THEN-ELSE IF
IF statements can be nested, as in the following example:
When you use this form, you are actually nesting an IF statement inside the ELSE part of an outer IF statement. Thus you need one END IF statement for each nested IF and one for the parent IF-ELSE. This is workable but grows tedious when there are many alternatives to be checked. Hence the next form.
35.7.2.4. IF-THEN-ELSIF-ELSE
IF-THEN-ELSIF-ELSE provides a more convenient method of checking many alternatives in one statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but only one END IF is needed.
Here is an example:
35.7.2.5. IF-THEN-ELSEIF-ELSE
ELSEIF is an alias for ELSIF.
35.7.3. Simple Loops
With the LOOP, EXIT, WHILE, and FOR statements, you can arrange for your PL/pgSQL function to repeat a series of commands.
35.7.3.1. LOOP
LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN statement. The optional label can be used by EXIT statements in nested loops to specify which level of nesting should be terminated.
35.7.3.2. EXIT
If no label is given, the innermost loop is terminated and the statement following END LOOP is executed next. If label is given, it must be the label of the current or some outer level of nested loop or block. Then the named loop or block is terminated and control continues with the statement after the loop's/block's corresponding END.
If WHEN is present, loop exit occurs only if the specified condition is true, otherwise control passes to the statement after EXIT.
EXIT can be used to cause early exit from all types of loops; it is not limited to use with unconditional loops.
Examples:
35.7.3.3. WHILE
The WHILE statement repeats a sequence of statements so long as the condition expression evaluates to true. The condition is checked just before each entry to the loop body.
For example:
35.7.3.4. FOR (integer variant)
This form of FOR creates a loop that iterates over a range of integer values. The variable name is automatically defined as type integer and exists only inside the loop. The two expressions giving the lower and upper bound of the range are evaluated once when entering the loop. The iteration step is normally 1, but is -1 when REVERSE is specified.
Some examples of integer FOR loops:
If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body is not executed at all. No error is raised.
35.7.4. Looping Through Query Results
Using a different type of FOR loop, you can iterate through the results of a query and manipulate that data accordingly. The syntax is:
The record or row variable is successively assigned each row resulting from the query (which must be a SELECT command) and the loop body is executed for each row. Here is an example:
If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the loop.
The FOR-IN-EXECUTE statement is another way to iterate over rows:
This is like the previous form, except that the source SELECT statement is specified as a string expression, which is evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement.
Note: The PL/pgSQL parser presently distinguishes the two kinds of FOR loops (integer or query result) by checking whether .. appears outside any parentheses between IN and LOOP. If .. is not seen then the loop is presumed to be a loop over rows. Mistyping the .. is thus likely to lead to a complaint along the lines of "loop variable of loop over rows must be a record or row variable", rather than the simple syntax error one might expect to get.
35.7.5. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function, and indeed of the surrounding transaction as well. You can trap errors and recover from them by using a BEGIN block with an EXCEPTION clause. The syntax is an extension of the normal syntax for a BEGIN block:
If no error occurs, this form of block simply executes all the statements, and then control passes to the next statement after END. But if an error occurs within the statements, further processing of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched for the first condition matching the error that occurred. If a match is found, the corresponding handler_statements are executed, and then control passes to the next statement after END. If no match is found, the error propagates out as though the EXCEPTION clause were not there at all: the error can be caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of the function.
The condition names can be any of those shown in Appendix A. A category name matches any error within its category. The special condition name OTHERS matches every error type except QUERY_CANCELED. (It is possible, but often unwise, to trap QUERY_CANCELED by name.) Condition names are not case-sensitive.
If a new error occurs within the selected handler_statements, it cannot be caught by this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION clause could catch it.
When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain as they were when the error occurred, but all changes to persistent database state within the block are rolled back. As an example, consider this fragment:
When control reaches the assignment to y, it will fail with a division_by_zero error. This will be caught by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented value of x, but the effects of the UPDATE command will have been rolled back. The INSERT command preceding the block is not rolled back, however, so the end result is that the database contains Tom Jones not Joe Jones.
Tip: A block containing an EXCEPTION clause is significantly more expensive to enter and exit than a block without one. Therefore, don't use EXCEPTION without need.